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Fig. 1. Our formulation is combined with a projected Newton solver to interpolate from a Vulcan salute (left) to an OK gesture (right). We can

also compute effects like surface parameterizations, elastic deformations and more using our algorithm. These are achieved by deriving an novel

expression of the ARAP/corotational energy, which is written in terms of invariants of the Cauchy-Green tensor and thus free of numerically

factored rotations and their gradients.

Isotropic As-Rigid-As-Possible (ARAP) energy has been popular for shape

editing, mesh parametrisation and soft-body simulation for almost two

decades. However, a formulation using Cauchy-Green (CG) invariants has

always been unclear, due to a rotation-polluted trace term that cannot be di-

rectly expressed using these invariants. We show how this incongruent trace

term can be understood via an implicit relationship to the CG invariants.

Our analysis reveals this relationship to be a polynomial where the roots

equate to the trace term, and where the derivatives also give rise to closed-

form expressions of the Hessian to guarantee positive semi-definiteness for

a fast and concise Newton-type implicit time integration. A consequence

of this analysis is a novel analytical formulation to compute rotations and

singular values of deformation-gradient tensors without explicit/numerical

factorization which is significant, resulting in up-to 3.5× speedup and ben-

efits energy function evaluation for reducing solver time. We validate our

energy formulation by experiments and comparison, demonstrating that

our resulting eigendecomposition using the CG invariants is equivalent to

existing ARAP formulations. We thus reveal isotropic ARAP energy to be a

member of the łCauchy-Green clubž, meaning that it can indeed be defined

using CG invariants and therefore that the closed-form expressions of the

resulting Hessian are shared with other energies written in their terms.
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1 INTRODUCTION

Isotropic ARAP, which is synonymous with the popular corotational

model1 [Chao et al. 2010; Hsieh 1977; McAdams et al. 2011; Rankin

and Brogan 1986; Stomakhin et al. 2012], has been widely used in

graphics literature for two decades. First appearing in the early

2000s by the name łstiffness warpingž in [Müller et al. 2002] (see

also [Etzmuß et al. 2003; Irving et al. 2004]), it has been one of

the simplest yet key material models for soft-tissue deformation in

character animation [Kugelstadt et al. 2018; McAdams et al. 2011],

geometry processing [Sorkine and Alexa 2007] as well as computer

vision [Myronenko and Song 2009; Sarabandi et al. 2020].

Despite the popularity and indispensable use of this model, chal-

lenges exists around some of its definition. The most common

isotropic hyperelastic energies for solid mechanics simulation in

computer graphics can be expressed with either tensors or Cauchy-

Green (CG) invariants. However, the ARAP energy resists being

written in terms of the latter. The energy is at most quadratic which

is appealing for its simplicity but a rewriting using CG invariants

is unknown due to a trace term containing a rotation from fac-

torization. Moreover, this numerical factorization restricts proper

1We use the term łcorotationalž in reference to the class of elasticity models that involve
explicit factoring out of rotations in some form.
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analytic treatment of corotational energies and their derivatives

as simple closed-form expressions since the factorsśe.g. rotation(s)

and stretchśare given by operations like polar decomposition (PD)

and singular value decomposition (SVD). These decompositions

have algebraic form (which is even imbued with intuitive geometric

interpretation) but there exists no direct closed-form expressions to

evaluate the constituting factors for non-symmetric inputs. Thus, it-

erative procedures are necessary to obtain these factors, which then

restricts analytic derivations of energies like ARAP since deriva-

tives (and integrals) of numerically obtained quantities do not have

proper closed-form expressions. Thus, unlike the Dirichlet [Hélein

and Wood 2008], Neo-Hookean [Bonet and Wood 2008] and St.

Venant-Kirchhoff [Picinbono et al. 2000] energies, ARAP remains

the only model within this group whose formulation has thus far

seemed inexpressible in terms of CG invariants, which prohibits a

generic (i.e. complete rogues’ gallery) formulation of gradients and

Hessians that is shared by these energies for Newton-type implicit

time integration.

In this paper, we show that the isotropic ARAP model can be un-

derstood entirely in terms of CG invariants. The first step in such an

analysis is usually to re-write the model as an isotropic, hyperelastic

strain energy [Bonet and Wood 2008]. However, it has never been

clear how to do this for the ARAP model. After first showing that

simply rewriting the model as an isotropic, hyperelastic strain en-

ergy is impossible due to the unwieldy trace term, we demonstrate

how this trace term can be both formulated and analysed using a

polynomial with coefficients expressed in terms of the invariants.

Using this energy, we establish that our formulation resembles

both Smith et al. [2018, 2019] (which has a similar structure) and the

tensor-based ARAP energy. We show that the original problematic

trace term can be understood as a root of a quartic equation in 3D (or

quadratic in 2D, and in 1D) incorporating all three CG invariants to

allow for a proper closed-form expression of the energy, its gradient,

and Hessian that is free of rotation gradients obtained via numerical

factorisation. Moreover, since this root is in closed-form the first

derivative is an expression evaluating to theśpreviously explicitly

factoredśrotation which we can now compute without resort to

any approximate/iterative procedures. Using our analysis, we also

show how the singular values of deformation gradient tensors can

be determined with relative ease using simple scalar expressions in

terms of our roots, which is novel and significant.

Finally, we characterize the exact conditions under which this

energy produces locally indefinite systems. Smith et al. [2019] char-

acterise this indefiniteness by advocating for a new set of invariants,

departing from the normative path of using CG invariants. More-

over, their first and third invariants are sign preserving, to indicate

element inversion, which then permits a rewriting and analysis of

energies like ARAP but with the expense of aśrotation-variantśPD

[Sorkine-Hornung and Rabinovich 2017]. We revisit eigenanalysis

to quantitatively establish the exact conditions under which indefi-

niteness occurs using well established derivations of the gradients

and Hessians of the CG invariants [Bonet and Wood 2008]. Our

closed-form, analytic expressions for the eigenvalues can also work

in tandem with Smith et al. [2019]’s analysis to enable a fast, simple,

and analytic method for projecting the Hessian back to positive

semi-definiteness. The efficacy of our formulation is demonstrated

in a variety of scenarios such as elastic deformation and surface

parameterization (see Fig. 1, ğ 7 and supplementary material).

A summary of our contributions is as follows:

• An isotropic ARAP energy using Cauchy-Green invariants.

• A complete eigenanalysis of the energy.

• A simple closed-form description of singular values and rota-

tion factors of the deformation gradient.

• An analysis showing that the energy is equivalent to existing

formulations of isotropic ARAP energy.

• A fast, analytic positive semi-definiteness projection method

for the Hessian.

2 RELATED WORK

The original corotational formulation [Rankin and Brogan 1986]

(colloquially known as ARAP [Sorkine and Alexa 2007]2) is widely

used for many reasons, including its simplicity, and its populariza-

tion of arbitrarily large-rotation deformation formulations. In this

work, we will focus on the constitutive model it uses for stretching.

Many related models have been used in the past, such as stiffness

warping [Etzmuß et al. 2003], St. Venant Kirchhoff (St-VK) [Picin-

bono et al. 2000], and the corotational method [Chao et al. 2010;

McAdams et al. 2011; Müller et al. 2002]. For isotropic materials it is

possible and often expedient to formulate the constitutive equations

using CG invariants, which contain all the information needed to

evaluate the stored elastic energy function [Bonet and Wood 2008;

Ogden 1997]. An overview, in the context of elastic deformation

simulation, between FEM-based models is also available [Kim and

Eberle 2020; Sifakis and Barbic 2012; Smith et al. 2018, 2019]. Of all

these works, the eigenanalysis of Smith et al. [2019] using isotropic

invariants is most similar to the results we present here, though our

analysis maintains a CG invariant based description, where we now

expand the space of expressible energies using these invariants to

include inversion-safe ARAP [Sorkine and Alexa 2007] and thus

corotational elasticity models like those by McAdams et al. [2011]

and Stomakhin et al. [2012].

The isotropic ARAP model has also been commonly presented as

either a tensor- or singular-value based formulation rather than as a

CG invariant based model. The reason is that CG invariants cannot

directly express linear distortion terms that appear in many popular

models, like the corotational energy [McAdams et al. 2011]. This is

the primary issue behind the inability to re-write ARAP using these

invariants (see also Stomakhin et al. [2012]; Xu et al. [2015] for a

further discussion). Smith et al. [2019] address this problem by in-

troducing a new set of invariants that require a polar decomposition

of the deformation gradient (see also [Kim and Eberle 2020]). We

revisit this problem to certify ARAP as a model expressible in terms

of the CG invariants and show that its isotropic formulation using

these invariants for expressing linear distortion terms is possible.

The tensor based formulation too (cf. Eq. (1)) presents theoreti-

cal and practical challenges when deriving its Hessian, requiring

rotational gradients from numerical factorisation. One solution has

been to use auto-differentiation [Gao et al. 2009] but the resulting

2Note that Sorkine and Alexa [2007]’s approach uses a one-ring/edge-stencil description
which shares a similar energy definition and optimization technique as other methods,
but does not equate to an elastic membrane energy [Panetta 2019].
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Fig. 2. A concise description of the deformation that an elastic body

has sustained. Here is show a single finite element with reference x̄

and spatial configurations x, which are related via a deformation map

𝜙 = Fx̄ + t, representing a local affine transformation. An important

physical quantity derived directly from this map is the deformation

gradient F from which one can measure stress resulting from the

deformation.

implementation is complex. Müller et al. [2002] and Irving et al.

[2004] do not address this issue while others [Barbič 2012; Chao

et al. 2010; McAdams et al. 2011; Wang et al. 2021] devise a variety

of specially-tailored techniques of varying complexity for dealing

with it. We achieve expressions for the isotropic ARAP energy’s

Hessian that surpass explicit need to compute rotation gradients as

in previous methods.

Rotational alignment problems. Numerous other problems within

computer graphics, vision, robotics and simulation involve determin-

ing the rotation aligning two objects. SVD is the standard solution,

with rotation recovered as a product of numerically-determined

singular vectors (see e.g. Irving et al. [2004]; Myronenko and Song

[2009]; Twigg and Kacic-Alesic [2010] and Sorkine-Hornung and

Rabinovich [2017]). Computation of only the rotation (i.e. skipping

the diagonal matrix of singular values) is possible with parame-

terizations of the rotations using exponential maps, Caley maps,

quaternions or the Rodrigues rotation formulawith optimization. Ex-

amples of these numerical procedures include Byers and Xu [2008];

Kugelstadt et al. [2018]; Müller et al. [2016]; Panetta [2018, 2019];

Wu et al. [2018] and most recently Zhang et al. [2021], which are

all iterative methods. We provide a closed-form expression for the

sought rotation and thereby its derivatives.

3 THE COROTATIONAL ENERGIES

Wewill begin with a brief overview of the original (i.e. tensor-based)

corotational formulation, following the notation of the original

[Rankin and Brogan 1986] as closely as possible. Once the prelim-

inaries are established, we will show how to cast these into a CG

invariant based formulation.

3.1 The Original Formulation

The ARAP method uses the Frobenius norm | | · | |2F to measure the

local strain energy density per finite element of elastic material

(cf. Fig. 2). Using PD, this strain energy quantifies stretching which

is measured as the difference between a deformation gradient F

(∈ R3×3 in 3D volume elements; ∈ R3×2 in 2D membrane elements;

and ∈ R3×1 in 1D strand elements) and a rigid body rotation R

(F = RS via PD) to give

Ψ =
𝜇

2
| |F − R| |2F, (1)

=
𝜇

2

(
| |F| |2F + ||R| |

2
F − 2tr(F

⊺R)
)
, (2)

≡ 𝜇

2

(
| |F| |2F + 3 − 2tr(S)

)
, (3)

≡ 𝜇

2

(
| |S| |2F + 3 − 2tr(S)

)
, (4)

which is a scalar function that is simplified by using the Frobenius

identity

| |A − B| |2F = | |A| |2F + ||B| |
2
F − 2tr(A

⊺B), (5)

and where Eq. (4) results from the rotation invariance of the norm

| | · | |2F. The Lamé constant 𝜇 = 𝐸/2(1 + 𝜈) is the shear modulus,

which is a material parameter controlling resistance to stretch: the

variable 𝐸 is Young’s modulus and 𝜈 is Poisson’s ratio. The appealing

nature of Eq. (1) comes from the fact that it is quadratic (i.e. in the

entries of F), which is appealingly less non-linear than e.g. the St-VK

model. In essence, the energy is minimized by the finding rotation

R maximising the trace (cf. Eq. (2)).

The 1st Piola-Kirchhoff stress (PK1) is then,

P(F) ≡ 𝜕Ψ

𝜕F
=

𝜕
(
𝜇
2

(
| |F| |2F + ||R| |

2
F − 2tr(F

⊺R)
))

𝜕F
,

=
𝜇

2

©«
𝜕 | |F| |2F
𝜕F

+
�
�
�✒

0

𝜕 | |R| |2F
𝜕F

− 2 𝜕tr(F
⊺R)

𝜕F

ª®®®®¬
,

=
𝜇

2
(2F − 2R) ,

= 𝜇 (F − R), (6)

which is simplified based on the invariance of the Frobenius norm

when applied to orthonormal matrices resulting in a constant. Nodal

forces are determined from Eq. (6) by f = −𝑣 𝜕Ψ𝜕x , where
𝜕Ψ

𝜕x
=

𝜕F

𝜕x
:
𝜕Ψ

𝜕F
(7)

≡ vec

(
𝜕F

𝜕x

)⊺
vec

(
𝜕Ψ

𝜕F

)
. (8)

These forces are scaled by the local element volume 𝑣 , where x rep-

resents the stacked nodal positions of the element. The equivalent

notation vec (·) denotes vectorization, which is a stacking of matrix

columns in the simplest case

A =

[
𝑎 𝑐

𝑏 𝑑

]
⇔ vec (A) =



𝑎

𝑏

𝑐

𝑑


= a.

Moreover, the change of deformation gradient w.r.t nodal positions

𝜕F/𝜕x (∈ IR3×3×12 for a linear tetrahedral element) is a 3rd-order ten-

sor, where respective vectorisation will produce a 2nd-order tensor

(∈ IR9×12) with each resulting column representing a stacking of the

corresponding columns of a block-entry (∈ IR3×3). This flattening
convention of vectors (and higher-order tensors) has properties that
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benefit our derivations. For brevity, we refer readers to Sec.3 in

Smith et al. [2019] (see also Kim [2020] and Golub et al. [2012]) for

a primer on the vector, matrix and general tensor notation that we

adopt throughout.

The force gradient too (i.e. the Hessian, or tangent stiffnessmatrix)

is required for implicit timestepping, which is defined by 𝜕f
𝜕x =

−𝑣 𝜕2Ψ
𝜕x2

, where

𝜕2Ψ

𝜕x2
=

𝜕F⊺

𝜕x

𝜕2Ψ

𝜕F2
𝜕F

𝜕x
, (9)

≡ vec

(
𝜕F

𝜕x

)⊺
vec

(
𝜕Ψ2

𝜕F2

)
vec

(
𝜕F

𝜕x

)
. (10)

Although the term 𝜕F
𝜕x may be constant (e.g. for a tetrahedral

mesh-based discretization), Eq. (9) presents an immediate obstacle

if one wishes to get an analytic expression for the ARAP energy’s

Hessian: The 4th-order tensor

𝜕2Ψ

𝜕F2
=

𝜕P(F)
𝜕F

= 𝜇

(
𝜕F

𝜕F
− 𝜕R

𝜕F

)
,

contains a rotation gradient 𝜕R
𝜕F which presents a challenge when

deriving a general analytic description because there are no explicit

entries of F that appear in R (from numerical factorisation).

3.2 No explicit Cauchy-Green invariant formulation exists

Alternatively, it should be possible to define any isotropic hypere-

lastic model like ARAP by using the three CG invariants [Bonet and

Wood 2008]

𝐼𝐶 = tr(C) 𝐼 𝐼𝐶 = | |C| |2F 𝐼 𝐼 𝐼𝐶 = det(C), (11)

where the variable C = F⊺F is the right Cauchy-Green tensor, which

can be computed inexpensively3. Using the chain rule, an energy of

the form Ψ(𝐼𝐶 , 𝐼 𝐼𝐶 , 𝐼 𝐼 𝐼𝐶 ) will have a PK1 stress tensor as

P(F) = 𝜕Ψ (𝐼𝐶 , 𝐼 𝐼𝐶 , 𝐼 𝐼 𝐼𝐶 )
𝜕F

=
𝜕Ψ

𝜕𝐼𝐶

𝜕𝐼𝐶

𝜕F
+ 𝜕Ψ

𝜕𝐼 𝐼𝐶

𝜕𝐼 𝐼𝐶

𝜕F
+ 𝜕Ψ

𝜕𝐼 𝐼 𝐼𝐶

𝜕𝐼 𝐼 𝐼𝐶

𝜕F
. (12)

The corresponding Hessian (a 4th-order tensor e.g. ∈ IR3×3×3×3 in
3D) is given by

𝜕P(F)
𝜕F

=

∑︁
𝑖

𝜕Ψ

𝜕𝑖
H𝑖 +

∑︁
𝑖

∑︁
𝑗

𝜕2Ψ

𝜕𝑖𝜕 𝑗
G𝑗 ⊗ G𝑖 (13)

where G𝑖 and H𝑖 are gradient and Hessian of the 𝑖-th invariant w.r.t

F, respectively, in tensor form with 𝑖, 𝑗 ∈ {𝐼𝐶 , 𝐼 𝐼𝐶 , 𝐼 𝐼 𝐼𝐶 }. The symbol

⊗ denotes the Kronecker product operator, which is given by

A ⊗ B =


[𝑎11B] [𝑎12B] · · ·
[𝑎21B] [𝑎22B]

...
. . .


,

with variable 𝑎𝑖 𝑗 representing a scalar entry in the respective tensor

A. We also refer the reader to Appendix A for the actual definitions

3Although it is possible to define an isotropic material by a relation between Ψ and Σ
e.g. as described by Stomakhin et al. [2012] where F = UΣV⊺ from SVD, this too may
not necessarily the preferred approach, since the overhead of an SVD computation
would be necessary.

of tensor variables G𝑖 and H𝑖 that are derived from the deformation

gradient F and used in Eq. (13).

Eq. (13)ślike the PK1 in Eq. (12)śis characterised by an expedient

generic structure to make for a practically convenient mix-and-

match approach to implementing isotropic energies. However, while

this analytic invariant-based description can be adopted easily for

energies like St-VK and Neo-Hookean, it is unclear how this applies

to ARAP for which a direct rewriting of its energy shown in Eq. (2)

in terms of the CG invariants (in Eq. (11)) yields

Ψ = 𝐼𝐶 − 2tr (F⊺R) + 𝑑, (14)

where 𝑑 is the spatial dimension of the finite element (e.g. 1, 2 or

3 dimensions). In particular, the trace term (with rotation R from

numerical factorisation) precludes analytic rewritingśand thereby a

derivation of the gradient and the Hessianśof the second term using

invariants. The fundamental problem is that this term is a linear

expression in the singular values F but the CG invariants denote

non-linear expressions. Smith et al. [2018; 2019] address this issue

by introducing a new set of invariants that is applicable to general

Neo-Hookean elasticity and dependant on PD. We instead seek a

solution that fits within and complements the generic structure of

theHessian defined using the CG invariants as in Eq. (13) while being

completely free of explicit rotation-related terms in the resulting

expressions.

3.3 An implicit formulation exists

Having described the challenge of formulating a rewriting of the

ARAP energy in terms of CG invariants, we now describe a solution

that will also bypass the explicit dependence on rotation gradients

that are fundamentally dependent on numerical factorisation of

the deformation gradient. Our method will additionally enable a

complete analytic derivation of the Hessian and allow efficient pro-

jection to positive semi-definiteness for implicit timestepping.

Following from Eq. (11), Stomakhin et al. [2012] (see also Xu et al.

[2015]) showed that the CG invariants may also be written using

the singular values of the deformation gradient

𝐼𝐶 = tr
(
Σ2

)
=

𝑑∑︁
𝑖=1

𝜎2𝑖 (15)

𝐼 𝐼𝐶 = tr
(
Σ4

)
=

𝑑∑︁
𝑖=1

𝜎4𝑖 (16)

𝐼 𝐼 𝐼𝐶 = det
(
Σ2

)
=

𝑑∏
𝑖=1

𝜎2𝑖 , (17)

where 𝜎𝑖 denotes one such value that is obtained by computing SVD

with F = UΣV⊺ .

From this perspective, it should be clear the trace term of Eq. (14)

will reduce to

tr (F⊺R) = tr (S) = tr (Σ) =
𝑑∑︁
𝑖=1

𝜎𝑖 . (18)

Raising Eq. (18) to the forth power and simplifying after substituting

the three invariant definitions from Equations 15 to 17, we obtain a

polynomial whose coefficients are the CG invariants and the trace

term is a root. This polynomial will be a quartic in 3D

ACM Trans. Graph., Vol. 41, No. 6, Article 275. Publication date: December 2022.
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P̃ (𝑡) = 𝑡4 − 2𝐼𝐶𝑡2 − 8
√︁
𝐼 𝐼 𝐼𝐶𝑡 + 𝐼2𝐶 − 4𝐼 𝐼

∗
𝐶 , (19)

where 𝐼 𝐼∗
𝐶
=

1
2

(
𝐼2
𝐶
− 𝐼 𝐼𝐶

)
. Closed-form expressions for quartic roots

exist, which can also be written in terms of the invariants4.

We rewrite the ARAP energy in Eq. (14) by first defining a function

𝑓 : IRd → IR which evaluates to the trace. Moreover, we define this

𝑓 to be the expression of the quartic root corresponding to the trace,

therebymaking it a function of the invariants.With this formulation,

the ARAP energy can be rewritten as

Ψ̃impl = 𝐼𝐶 − 2
(
P̃ (𝑡)

���
𝑡=𝑓

= 0

)
+ 𝑑, (20)

where the problematic trace term of Eq. (14) is now replaced with the

differentiable 𝑓 satisfying P̃ (𝑓 ) = 0. Readers are referred to our sup-

plementary material, which provides the closed-form expressions

for this 𝑓 .

The second term of the energy Ψ̃impl in Eq. (20) is now stated

implicitly in one of the roots of the polynomial P̃ (𝑡). This new form

is expressed with the CG invariants which represent the terms in 𝑓 ,

while the former energy in Eq. (14) is based solely on the singular

values of F. Closed-form derivatives can therefore be obtained easily,

which can then be used to construct the analytic PK1 and Hessian.

Eq. (19) unfortunately has a key drawback that we must address.

3.4 Inversion awareness

While Eq. (19) possesses the desired qualities to account for stretch,

compression and even volume, it lacks inversion awareness which

is crucial for robust simulation. In computer graphics (e.g. [Irving

et al. 2004; Teran et al. 2005]) it is well known that finite elements

might invert for a multitude of reasons, including numerical error.

This predicament relates to P̃ (𝑡) as well since (as we will show)
it is practically convenient that information indicating inversion

is captured in the expression. Otherwise, the forces (cf. ğ 4) that

arise from the derivatives of P̃ (𝑡) = 0 are only valid for solutions

𝑡 ≠ tr (F⊺R) when the element is inverted. Moreover, Eq. (18) is a

solution only when the element has positive volume. This lack of

inversion awareness is a known side effect of the third invariant

𝐼 𝐼 𝐼𝐶 [Smith et al. 2019]. One solution is to flip the sign of the third

term

𝑡4 − 2𝐼𝐶𝑡2 + 8
√︁
𝐼 𝐼 𝐼𝐶𝑡 + 𝐼2𝐶 − 4𝐼 𝐼

∗
𝐶 ,

to then use this new expression in the specific case of inversion.

We avoid this approach, because the ensuing analytic derivatives of

Eq. (22) must be evaluated as separate routines for the normal and

inverted case per element. Moreover, this increases the complexity

of booking keeping during implementation and should therefore be

done judiciously.

Intuitively, the problem with Eq. (19) is that the relationship of

Eq. (18) to the change in element volume is expressed with the third

invariant 𝐼 𝐼 𝐼𝐶 = 𝐽 2, which discards the sign information about the

volume ratio 𝐽 = det(F). Consequently, we ask whether we can

evaluate the exact ratio so that when the element is inverted, this

4Refer to our supplementary material for the full derivation of Eq. (19), including the
versions for one- and two-dimensional finite elements.

information is captured in the sign of 𝐽 . To answer this question,

we replace
√
𝐼 𝐼 𝐼𝐶 with 𝐽 :

P(𝑡) = 𝑡4 − 2𝐼𝐶𝑡2 − 8𝐽𝑡 + 𝐼2𝐶 − 4𝐼 𝐼
∗
𝐶 , (21)

with which we arrive at our implicit ARAP energy

Ψ𝑖ARAP = 𝐼𝐶 − 2
©
«
P(𝑡) |𝑡=𝑓 = 0︸          ︷︷          ︸
P−Energy

ª®®®®
¬
+ 𝑑. (22)

This is strikingly similar to the Smith et al. [2019]’s ARAP formu-

lation except that their 1st invariant 𝐼1 ≡ tr(Σ) is now replaced

with the expression for the solution P(𝑡) |𝑡=𝑓 = 0. The polynomial

P(𝑡) and its derivatives are also independent of rotations, which is

implied by Eq. (18) since the problematic trace term of Eq. (14) is

uniquely defined by the singular values of F. This property follows

from rotation invariance of Eq. (1)

∥F − R∥2F = ∥R⊺F − R⊺R∥2F = ∥S − I∥2F,
resulting in the Biot strain tensor (RHS) from mechanics literature

[Biot 1938] (see also Chao et al. [2010]). In essence, we have per-

formed a rotation removal on tr (F⊺R) but without PD nor SVD,

which will result in analytic expressions of the PK1 and the Hessian

of Eq. (22) that are free of their (numerical) rotations.

4 DERIVATIVES OF ARBITRARY P-ENERGIES
The implicit potential Ψ𝑖ARAP reveals that the variables 𝜕Ψ/𝜕𝑖 and
𝜕2Ψ/𝜕𝑖 𝑗 in Eq. (13) (and Eq. (12)) are dependent on the 1st- and 2nd-

order partial derivatives of our root function 𝑓 w.r.t the invariants,

which are needed to construct the PK1 and Hessian. In this light,

we now show that the analytic gradient and Hessian of any energy

expressed solely in terms of this 𝑓 can be written down in proper

closed-form.

We can solve for the partial derivatives of the root function 𝜕𝑓 /𝜕𝑖
from Eq. (21) by first noting that P(𝑡) = 0 holds regardless of

the values of the CG invariants. Therefore, by applying the partial

operator 𝜕/𝜕𝑖 , we obtain
𝜕P(𝑡)
𝜕𝑖

= 0, (23)

with which we analytically solve for 𝜕𝑓 /𝜕𝑖 by rearranging the terms

in the left-hand-side expression:

𝜕𝑓

𝜕𝐼𝐶
=

2𝑓 2 + 2𝐼𝐶
𝛼

,
𝜕𝑓

𝜕𝐼 𝐼𝐶
=
−2
𝛼
,

𝜕𝑓

𝜕𝐽
=

8𝑓

𝛼
, (24)

where 𝛼 = 4𝑓 3−4𝐼𝐶 𝑓 −8𝐽 and with the volume ratio 𝐽 is heretofore

used in-place of the third invariant 𝐼 𝐼 𝐼𝐶
5. The corresponding 2nd-

order partial derivatives are of the form

𝜕2 𝑓

𝜕𝑖𝜕 𝑗
=
𝑝𝑖 𝑗

𝛼
, (25)

where the numerator 𝑝𝑖 𝑗 represents scalar expressions that we pro-

vide in Appendix B.

5We emphasise that our motivation for using this 𝐽 is merely a practical one. It is in
fact possible to use 𝐼 𝐼 𝐼𝐶 but this requires a case-by-case (i.e. inverted vs. non-inverted)
handling of derivatives of 𝑓 , which can be avoided.
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From Eq. (24) and Eq. (25), the 1st- and 2nd-order partial deriva-

tives of the energy in Eq. (22) and w.r.t the invariants are

𝜕Ψ

𝜕𝐼𝐶
= 1 − 2 𝜕𝑓

𝜕𝐼𝐶
,

𝜕Ψ

𝜕𝐼 𝐼𝐶
= −2 𝜕𝑓

𝜕𝐼 𝐼𝐶
,

𝜕Ψ

𝜕𝐽
= −2 𝜕𝑓

𝜕𝐽
, (26)

𝜕2Ψ

𝜕𝑖 𝑗
= −2 𝜕

2 𝑓

𝜕𝑖 𝑗
, (27)

which we use to construct the (previously unknown) PK1 and Hes-

sian of the problematic trace term in Eq. (14) by following Eq. (12)

and Eq. (13), respectively.

The expressions in Eq. (26) and Eq. (27) are evaluated by setting

𝑡 equal to the trace in Eq. (18). Moreover, the singular values of

the deformation gradient F can be determined via simple scalar

expressions of the polynomial roots, as shown in our supplementary

material: For example, in 3D with F ∈ IR3×3 we have

𝜎1 = (𝑥1 + 𝑥4)/2
𝜎2 = (𝑥2 + 𝑥4)/2
𝜎3 = (𝑥3 + 𝑥4)/2, (28)

as the closed-form expressions of the singular values, where 𝑥𝑖 is

the 𝑖th root of the polynomial P(𝑡) in Eq. (21). From these singular

values it is also possible to directly determine the eigenvalues of

the local Hessian
𝜕P(F)
𝜕F (cf. Eq. (32)) as shown in ğ 5. This novel

approach to compute the singular values thus works in tandem with

(and to the benefit of) existing methods.

5 EIGENANALYSIS OF THE ENERGY

Numerical minimization of Ψ𝑖ARAP using 2nd-order Newton meth-

ods can be a challenge due to stalls and even divergence when the

energy Hessian is indefinite. Here, we revisit the problem of en-

suring positive semi-definiteness by projection, but without any

iterative procedures such as SVD or PD, thanks to the new energy

formulation that provides a closed-form solution for the trace-term.

5.1 Ensuring Positive Semi-Definiteness of the Hessian

To ensure positive semi-definiteness of the Hessian in Eq. (22), the

eigenvalues and eigenvectors can be stated in closed-form [Kim

and Eberle 2020]. Considering only the 3D case for simplicity, this

analytic eigenstructure is revealed by a vectorization of each block

entry of the Hessian into a single column

vec

(
𝜕P(F)
𝜕F𝑖 𝑗

∈ IR3×3
)
⇒ IR9×1 . (29)

Thus, applying this rule for all blocks 𝜕/𝜕F𝑖 𝑗 , one arrives at the

reduced form

vec

(
𝜕P(F)
𝜕F

)
∈ IR9×9 . (30)

Eq. (30) is evaluated by vectorizing tensor terms in Eq. (13) to give

vec

(
𝜕P(F)
𝜕F

)
=

∑︁
𝑖

𝜕Ψ

𝜕𝑖
H𝑖 +

∑︁
𝑖

∑︁
𝑗

𝜕2Ψ

𝜕𝑖𝜕 𝑗
g𝑗g
⊺
𝑖 (31)

where g𝑖 = vec (G𝑖 ) ,H𝑖 = vec (H𝑖 ), and the overloaded symbols

𝑖, 𝑗 ∈ {𝐼𝐶 , 𝐼 𝐼𝐶 , 𝐽 } refer to the invariants here.

The eigenpairs of our vectorised Hessian are determined by solv-

ing the analytic eigen problem: Eigenvalues are determined by evalu-

ating roots of the characteristic polynomial det (A − 𝜆I) = 0, where

A ∈ IR9×9 is our vectorised Hessian and I ∈ IR9×9 is the identity
matrix to give

𝜆0 = 1 − 2

𝜎1 + 𝜎2
𝜆1 = 1 − 2

𝜎2 + 𝜎3
𝜆2 = 1 − 2

𝜎1 + 𝜎3
𝜆3...8 = 1,

as our eigenvalues in 3D where F ∈ IR3×3. We also have

𝜆0 = 1 − 1

𝜎1
𝜆1 = 1 − 1

𝜎2
𝜆2 = 1 − 2

𝜎1 + 𝜎2
𝜆3,4,5 = 1

in 2D where F ∈ IR3×2, and 𝜎𝑖 are the singular values of the defor-
mation gradient F which can be computed directly from the roots

of P(𝑡) using Eq. (28). In 1D with F ∈ IR3×1, we also have

𝜆0 = 1 𝜆1,2 = 1 − 1

𝜎1
,

where 𝜎1 corresponds to the current length of 1D strand element.

A corresponding vector q𝑖 (∈ IR9 for a tetrahedral element; ∈
IR6 for a triangular element; and ∈ IR3 for a strand-like/2-point

edge element) of each eigenvalue 𝜆𝑖 is obtained simply by solving

(A − 𝜆𝑖 I) q𝑖 = 0. The resemblance of our eigensystem to Smith et al.

[2019] both validates our scheme and means that their correspond-

ing eigenvector expressions (and the 2D forms by Panetta [2019])

can also be used in place of the explicit solve, which is practically

expedient. We provide the analytic eigenvectors for a 1D strand

energy in our supplementary material.

Constructing a Hessian that is positive semi-definite is thus re-

duced to applying

vec

(
𝜕P

𝜕F

)
=

𝑁∑︁
𝑖=1

⟨𝜆𝑖 ⟩q𝑖q𝑖⊺, (32)

where 𝑁 ∈ IR9 in 3D (∈ IR6 in 2D; and ∈ IR3 in 1D) and the operator

⟨·⟩ denotes the Macauley brackets

⟨𝑥⟩ =
{
𝑥, if 𝑥 ≥ 0

0, if 𝑥 < 0
.

In summary, by rewriting the ARAP potential as in Eq. (22) and

obtaining the closed-form expressions of any energy written solely

in terms of the root P (𝑡) = 0, we can evaluate the PK1 and ex-

act positive semi-definite Hessian of the ARAP energy written in

terms of the CG invariants and bypass the need to evaluate rotation

gradients.

5.2 Relationship to Previous ARAP Eigensystems

Using a recent analysis by Wang et al. [2021], we discuss our an-

alytic eigensystem for the ARAP stretch term, and the relation to

force filtering by Teran et al. [2005] and the analytic eigensystems

approach of Smith et al. [2019] when applied to Eq. (9).

To compute the problematic rotation gradient of Eq. (9), one can

start from PD F = RS and its derivative 𝜕F
𝜕F𝑖 𝑗

=
𝜕R
𝜕F𝑖 𝑗

S + R 𝜕S
𝜕F𝑖 𝑗

that
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gives

𝜕R

𝜕F𝑖 𝑗
=

(
𝜕F

𝜕F𝑖 𝑗
− R 𝜕S

𝜕F𝑖 𝑗

)
S−1 . (33)

Using Sylvester’s equation (cf. ğ3.7 in [Wang et al. 2021]), the un-

known term 𝜕S
𝜕F𝑖 𝑗

in Eq. (33) may be determined by

vec

(
𝜕S

𝜕F𝑖 𝑗

)
= (S ⊕ S)−1 vec

(
𝜕F⊺F

𝜕F𝑖 𝑗

)
, (34)

where ⊕ denotes Kronecker sum.

Thus, by using Eq. (33), one can evaluate the tensor-based Hessian

in Eq. (9) and solve a similar eigen problem as Teran et al. [2005].

We found that these steps lead to the exact same eigenpairs as

our invariant-based method (and of course Smith et al. [2019]).

Notably however, the tensor-based formulation is limited to cases

where S ⊕ S is invertible (see Eq. (34)): The solution to Sylvester’s

equation is unique exactly when an element is non-degenerate

(e.g. not collapsed to a plane, line or point) since det(F) = det(S) ≠ 0

is assumed. Conversely, our model is robust under extreme, inverted

configurations as our results show in ğ 7.

In comparison to Smith et al. [2019], they require computing

the rotation matrix via iterative procedures à la SVD or PD for

evaluating the energy and computing the eigenvectors q𝑖 of the

Hessian, which can be avoided in ourmethod. Our energy evaluation

can bypass these procedures to improve solver performance, which

is significant because the energy is evaluated multiple times per

Newton iteration e.g. during the line-search (see Algo. (1), Line (10)).

In fact, our formulation also provides a fast and exact method to

compute the analytic rotation matrix, which could also be helpful

for Smith et al. [2019] and others. The closed-form root function

𝑓 ≡ tr (F⊺R) is a re-presentation of the trace, leading to a concise

expression for theśpreviously numerically factoredśrotation of F.

From Petersen and Pedersen [2012] and by the chain-rule, we have

𝜕𝑓

𝜕F
≡ 𝜕tr (F⊺R)

𝜕F
≜ R

=
𝜕𝑓

𝜕𝐼𝐶

𝜕𝐼𝐶

𝜕F
+ 𝜕𝑓

𝜕𝐼 𝐼𝐶

𝜕𝐼 𝐼𝐶

𝜕F
+ 𝜕𝑓

𝜕𝐽

𝜕𝐽

𝜕F
. (35)

As we have closed-forms for
𝜕𝑓
𝜕𝑖 (see Eq. (24)) and 𝜕𝑖

𝜕F (see Appendix

A), this gives a closed-form for the rotation R⇔ S−1F. Higher order
derivatives follow naturally; and conventional rotation factors of F

that have previously been computed with SVD can be obtain using

the diagonalization of S = R⊺F = VΣV⊺ , from which we get V and

then U = RV 6.

6 FINAL ENERGY AND IMPLEMENTATION

Having discussed some practical advantages of our method in ğ 5.2,

we now describe the final energy that we use in this section, and

summarise implementation details necessary to simulate the results

that we show in ğ 7.

6See e.g. Eberly [2020a,b] for the reference implementation, which we use for our 2 × 2
and 3 × 3 symmetric matrix diagonalization.

(a) No volume preservation (b)With volume preservation

Fig. 3. Comparison between stretching a cube with and without vol-

ume preservation.

6.1 Final energy

Isotropic ARAP is by definition a measure of the deviation of the

edge lengths (in principle-stretch space) from unit length, which

implies that volume preservation is unaccounted for. Thus, an addi-

tional term is included into our energy, which attempts to maintain

the original volume [Ogden 1997]. Our final energy, which accounts

for this change in volume, is given by

Ψfinal =
𝜇

2
Ψ𝑖ARAP +

𝜆

2
(𝐽 − 1)2, (36)

which is rest stable [Smith et al. 2018] where the new Lamé constant

𝜆 = 𝐸𝜈/(1 + 𝜈) (1 − 2𝜈) controls the material’s tendency for volume

preservation (cf. Fig. 3) The (vectorised) gradient of Eq. (36) is given

by

𝜕Ψfinal
𝜕F

= 𝜇

(∑︁
𝑖

Ψ𝑖g𝑖

)
+ 𝜆(𝐽 − 1)g𝐽 , (37)

and the Hessian by

vec

(
𝜕2Ψfinal

𝜕F2

)
= 𝜇

©
«
∑︁
𝑖

Ψ𝑖H𝑖 +
∑︁
𝑖

∑︁
𝑗

Ψ𝑖 𝑗g𝑗g
⊺
𝑖
ª®¬

+ 𝜆
(
g𝐽 g
⊺
𝐽
+ (𝐽 − 1)H𝐽

)
, (38)

where the first term is projected to positive semi-definite state using

Eq. (32), with the variables g𝐽 and H𝐽 representing the vectorized

gradient and Hessian of the volume ratio 𝐽 , respectively (see also

Smith et al. [2019], ğ4.2 for the corresponding analytic eigensystem).

6.2 Implementation

To perform dynamic simulation, we follow the standard approach for

computing the new vertex positions x𝑡+1 ∈ IR3n by minimising of an

incremental potential (IP) [Kane et al. 2000], which we summarise

here: Given 𝑛 vertex positions x𝑡 ∈ IR3n and velocities v𝑡 ∈ IR3n at

time 𝑡 ∈ IR, this IP (with Rayleigh damping) is defined as

𝐸 (x, x𝑡 , v𝑡 ) = 1

2
(x − x̂)⊺M(x − x̂) + Δ𝑡2Ψfinal

+ 𝑘 1

2Δ𝑡2
(x − x𝑡 )⊺M(x − x𝑡 ) − Δ𝑡2x⊺ (f𝑑 + f𝑒 ), (39)

where Δ𝑡 is the time step size,M ∈ IR3n×3n is the diagonal mass ma-

trix and x̂ = x𝑡 +Δ𝑡v𝑡 +Δ𝑡2M−1f𝑒 . 𝑘 is the damping coefficient. The

variables f𝑑 and f𝑒 denote friction forces (if collisions are handled)

and forces that are external to the body, respectively.

In practice, we compute the new positions x𝑡+1 by iteratively

minimising Eq. (39) using a Newton-type solver. At each iteration,
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Algorithm 1 Projected Newton Solver

1: procedure MinimiseIncrementalPotential(x𝑡 )

2: x← x𝑡

3: xprev ← x

4: 𝐸prev ← 𝐸 (x)
5: repeat

6: g← 𝜕𝐸 (x)
𝜕x

7: H← projectedHessian
(
𝜕2𝐸 (x)
𝜕x2

)
⊲ Section ğ 5

8: p← −H−1g ⊲ Solve Eq. (40)

9: 𝛼 ← 1

10: do ⊲ Line search

11: x← xprev + 𝛼p
12: 𝛼 ← 𝛼

2
13: while 𝐸 (x) > 𝐸prev
14: xprev ← x

15: 𝐸prev ← 𝐸 (x)
16: until ∥g∥∞ < 𝜖

17: return x ⊲ New positions x𝑡+1

18: end procedure

we minimise the energy by evaluating the following linear system

at the current iterate x (see also Line (8) in Algo. (1))[
M + Δ𝑡2 𝜕

2
Ψfinal

𝜕x2
+ 𝑘 1

2Δ𝑡2
M

]
p =

−
(
M(x − x̂) + Δ𝑡2 𝜕Ψfinal

𝜕x
+ 𝑘 1

2Δ𝑡2
M(x − x𝑡 ) − Δ𝑡2 (f𝑑 + f𝑒 )

)
,

(40)

using preconditioned conjugate gradients (PCG) [Shewchuk 1994]

where p is the vector of displacements, the variables 𝜕Ψfinal
𝜕x and

𝜕2Ψfinal

𝜕x2
are computed from 𝜕Ψfinal

𝜕F (Eq. (37)) and
𝜕P(𝐹 )
𝜕F (Eq. (38))

using Eq. (7) and Eq. (9), respectively. A simplified example (without

collisions) is outlined in Algo. (1).

7 RESULTS AND DISCUSSION

We present our results in this section, which are produced on an

Ubuntu system with a 16-core 3.8GHZ Intel Xeon Platinum CPU

and 32GB of RAM. Examples are based on a tetrahedral, triangle

or strand mesh based discretization. Simulations are solved with a

standard Newton solver with a line search, and our linear systems

are solved using the Eigen implementation of the PCG method

[Guennebaud et al. 2021]; the only exception is our cloth simulation,

which is solved with Sparsesuite (cholmod) [Davis and Hu 2011]

due to the number of (triangle) elements (32k). All Newton solves

were run until the absolute infinity-norm of the force residual was

less than 10−4Δ𝑡 as Smith et al. [2019] with all other PCG settings

set to their defaults.

Compression and stretch tests. We setup a cylinder to be com-

pressed (2/3× of original length) and stretched (3× original length).

The model is composed of 142,720 tetrahedra where we translate

hardconstrained vertices on two opposing faces. Three models are

compared with: corotational energy [McAdams et al. 2011]; Stable

Neo-Hookean energy (SNE) [Smith et al. 2018]; and force-filtering

[Teran et al. 2005] with the rotation gradients computed with the

𝜈 SNE Tensor ARAP/Ours/Smith

0.0

0.3

0.499

Fig. 4. Beam compression test with three settings for Poisson’s Ratio

𝜈 . We compare our method with Stable Neo-Hookean (SNE) [Smith

et al. 2018]; the tensor based ARAP formulation [Teran et al. 2005]

(cf. Eq. (9)) where rotation gradients are computed with the Sylvester

equation in Eq. (33); and Smith et al. [2019]’s distortion energy (Smith)

𝜈 SNE Tensor ARAP/Ours/Smith

0.0

0.3

0.499

Fig. 5. Beam stretch test. See also Fig. 4

Sylvester equation (ğ 5.2). We show results for Poisson’s ratio set to

𝜈 = 0.1, 0.3 and 0.49 in Fig. 4 and Fig. 5. Our method is able to pre-

serve volume in all cases according the setting of 𝜈 . We successively

penalize volume-loss (or volume-gain) in the limit of 𝜈 ≈ 0.499 (the

beam loses 0.12% volume when compressing and gains 0.14% when

stretching) and similarly eliminate any tendency for penalization

when 𝜈 ≈ 0. Our results are also shared with the force filtering

method. Conversely, SNE works well under stretching but shows

artefacts when 𝜈 ≈ 0 due to Smith et al. [2018]’s reparameterization

of the Lamé constants 𝜇 and 𝜆 for their model to reproduce the PK1

of linear elasticity (see ğ3.4 in [Smith et al. 2018]). Further results are

shown in Fig. 6 which plots our methods rate of volume loss for the

three setting of 𝜈 . We preserve volume best under stretching, we are

gaining approximately 0.05𝑚3 volume and losing 0.02𝑚3 per time

step on average when 𝜈 = 0.3. (see orange line with 𝜈 = 0.3 in Fig. 6a

and Fig. 6b). Our method is overall robust and captures bulging de-

formations well at 𝜈 ≈ 0.499 and remains able to preserve edge

length when 𝜈 ≈ 0.0 without requirement for reparameterization.

Dynamics. In Fig. 7, we show our ARAP model undergoing dy-

namic, extreme deformations using the Stanford Bunny model. We

fix the base and then pull on the ears as well as recovering from

flat planar state. In both instances, the bunny recovers as soon as
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(a) Compression

(b) Stretching

Fig. 6. A plot of total volume loss with three setting of Possion’s Ratio

𝜈 . The Young’s Modulus is set to 5000.

Fig. 7. Recovery from severe compression and stretch.

the external force is removed demonstrating that our formulation

reproduces the expected deformation behaviour.

Scramble test. In Fig. 8, we perform a ‘scramble’ test similar to

Smith et al. [2018], Stomakhin et al. [2012] and Teran et al. [2005].

The vertices of a unit cube are randomly placed within a cube of

twice the rest volume, with vertices of the corner maintained in

their proper positions to constrain rigid body modes. The results

demonstrate that our method is robust to inversions and other

degenerate configurations (e.g. element flattening) to gracefully

recover the original rest configuration.

Cloth. Our energy is also applicable to triangle meshes, where

deformation is fundamentally expressed in the respective 2D plane.

A notable aspect is that these meshes yield a non-square deforma-

tion gradient F ∈ IR3×2, which poses a subtle nuisance since polar

decomposition is assumed to work only on square matrices. Work-

ing in 2D is one solution but this requires explicit projections of

vertices, casting the deformation problem to the plane. Sumner and

Popović [2004]’s auxiliary vertex scheme is a solution but increases

the number of degrees of freedom. Instead, by using a non-square

factorisation, which we describe in Appendix C, we can maintain

the same energy formulation and without augmenting with extra

degrees of freedom (DOF).

To simulate cloth, our energy (cf. Eq. (22)) acts as the stretching

term (replacement for Eq. (11) in [Kim 2020]), where we add the

Baraff-Witkin style shearing term from Kim [2020] and a Discrete

Shells bending energy fromGrinspun et al. [2003]. Using a stretching

test applied to a piece of cloth, we have found that the resulting

deformations are qualitatively similar to Kim’s Baraff-Witkin model

(see Fig. 10) and exactly identical to his ARAP shell energy.

We also evaluate our cloth model using a Virtual Try-On sce-

nario (see Fig. 9), dressing up an animated model whose motion

deforms the outfit due to contact and frictional forces. Our formula-

tion remains robust and provides an adequate choice for modelling

complex cloth with contacts, where the conditions of indefiniteness

are also known. Collisions between the cloth (dress) and body (in-

cluding self-collisions) are handled using the Incremental Potential

Contact (IPC) method of Li et al. [2020].

Performance. We evaluate performance by comparing the average

time and number of conjugate gradient iterations performed by the

Newton solver at each time step, which is shown in Tab. 1. Our

method exhibits faster performance than related methods, including

the state-of-the-art [Smith et al. 2019], and with notable capabilities

for volume preservation which is commonly associated with Neo-

Hookean models.

Performance differences with SNE [Smith et al. 2018] are attrib-

uted to the differences in the non-linearity of the energy terms

relating to volume preservation, which tend to affect the conver-

gence rate of our conjugate gradient solves and line-search. These

differences may be further exacerbated by element inversion, which

Smith et al. [2018] also penalize with a regularized origin barrier

energy term but we treat with a standard quadratic term in 𝐽 . The

fact that our model is faster when 𝜈 = 0 may be evidence for this

case, and perhaps suggests a source of potential future improvement

in performance by combining our implicit ARAP stretch term with

their origin barrier.

3D Shape Interpolation. Given an initial shape and a final shape,

our formulation can also be used to interpolate between two defor-

mations as in Smith et al. [2019] and Chao et al. [2010]. We use a de-

formation energyΨsrc which is measured relative to the initial shape,

and Ψtgt which is measured relative to the final shape. The combined

(interpolation) energy is thenΨ = (1−𝑡)Ψsrc+𝑡Ψtgt, 𝑡 ∈ [0, 1], which
we minimise given 𝑡 . Both Ψsrc and Ψtgt are based on our ARAP

energy in Eq. (36). To evaluate our method we first interpolated

between two poses of a hand model with bending deformations

Fig. 1 which our method handles robustly. We use models from Yeh

et al. [2010]: the source shape is on the left, interpolated shapes

are in the middle, and the target shape is on the right (t = 0, 0.25,

0.5, 0.75, 1.0). The hand model had 25k elements and running at

average 5.2s per iteration with 5.3 iterations per time step. We also

evaluate our method using two poses of a twisted bar (Fig. 11) to

validate our method with more complex geometry exhibiting ro-

tational distortions. In this case, the bar model had 51k elements

and took average 2.3s per iteration with 4.6 iterations per time step.
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Fig. 8. A classic benchmark where we randomly set the vertices of a cube object in a space twice its volume to then successfully recover the shape.

Table 1. Performance summary of elastic object simulation, with comparison against Stable Neo-Hookean elasticity (SNE) [Smith et al. 2018],

force filtering (FF) [Teran et al. 2005] with Sylvestor’s equation for computing rotation gradients, and Smith et al. [2019]’s distortion energy (Smith).

The material parameters are as follows: Young’s Modulus (𝐸); Poisson’s Ratio 𝜈 . In all case we use a timestep of 0.01s, where the number of iterations

and time is presented as an average.

Ours Smith FF SNE

Scenario #Elems 𝐸 𝜈 Iters. Time Iters. Time Iters. Time Iters. Time

Beam Stretch 142720 5000 0.499 12.2 116.60 12.2 117.15 12.2 117.90 11.5 104.24

Beam Compress 142720 5000 0.499 7.2 72.18 7.2 72.39 7.2 72.54 6.0 52.89

Beam Stretch 142720 5000 0.3 5.1 10.33 5.1 10.98 5.1 11.04 3.8 8.12

Beam Compress 142720 5000 0.3 3.8 8.07 3.8 8.27 3.8 8.66 3.3 6.79

Beam Stretch 142720 5000 0.0 3.1 5.06 3.1 5.26 3.1 5.91 3.0 5.71

Beam Compress 142720 5000 0.0 3.1 5.29 3.1 5.44 3.1 5.75 13.2 17.14

Bunny Stretch 637584 5000 0.3 21.2 437.00 21.2 444.16 21.2 454.06 14.6 238.22

Bunny Compress 637584 1500 0.3 14.5 191.50 14.5 197.72 14.5 203.72 12.0 177.37

Fig. 9. Virtual Try-on: we can also simulate cloth deformation using

our formulation with (self) collision contact and friction.

Our method is also able to resolve interpolations between twisted

geometries seamlessly.

D
ro
p

St
re
tc
h

Kim [2020] Ours

Fig. 10. Left: Stretch and drape test using Kim [2020]’s FEM force

formulation of Baraff-Witkin cloth. Right: Stretch and drape test, using

our isotropic ARAP FEM formulation.

Surface Parameterization. We test our approach on parametriza-

tion, minimizing the distortion energy expressed in the 2D plane

with results shown in Fig. 12. We use the Tutte Embedding [Floater

1997] as the initial parameterization in our setup and proceed to

minimize the energy using our projected Newton solver. Notably,
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Table 2. Summary of cloth simulation performance. The stretching

and shearing stiffness parameters are both set to 10000.

Scenario #Elems Δ𝑡 Bending Stiffness Iters. Time

Cloth Stretch 32768 0.01 0.2 16.8 25.67

Cloth Stretch 32768 0.01 0 14.5 22.78

Cloth Drop 32768 0.01 0.2 5.6 12.51

Cloth Drop 32768 0.01 0 4.9 8.87

Virtual Try-on 8280 0.016 0 6.7 8.63

Fig. 11. Bar twist shape interpolation.

performing parameterization by minimizing the distortion energy

in Eq. (36) will work in most instances but is generally insufficient to

guarantee bijectivity. The forces arising from the quadratic volume

preservation term are insufficient to prevent inversions. An example

is also shown in Fig. 13 with non-bijective parameterization of the

camel mesh, where areas with flipped triangles are highlighted.

Inspired by barrier formulations (e.g. Smith and Schaefer [2015]

and Li et al. [2020]) which strive to prevent such inversion, we

augment our energy with an in-plane barrier as follows

ΨFP =

3∑︁
𝑖=1



−

(
ℎ̂ − ℎ𝑖

)2
log

(
ℎ𝑖

ℎ̂

)
, ℎ𝑖 ≤ ℎ̂,

0, ℎ𝑖 > ℎ̂.

Whereℎ𝑖 denotes the distance between the 𝑖-th vertex in the triangle

and its opposite edge and ℎ̂ is a threshold (e.g. average triangle

height) determining when the barrier force will be activated to

prevent flipping. The final parameterization energy we use is given

by

Ψparam = 𝜇Ψ𝑖ARAP + 𝜆ΨFP, (41)

where 𝜇 and 𝜆 are set to 10 and 1, respectively throughout our ex-

periments which are shown in Fig. 12. Our method successfully

parameterizes complex models, ensuring bijectivity and with mini-

mal distortion in the bulging extremities of surfaces.

Multiple Materials. To demonstrate the easiness of using our CG

invariant based energy, we show a case of dropping three armadillo

models with three different energies (defined using the CG invari-

ants) to the ground in one scenario. These are our final elastic energy

Eq. (36), the Stable Neo-Hookean elasticity [Smith et al. 2018], and

Fig. 12. Surface parameterizations computed with our formulation

(cf. Eq. (41))

(a) Flipped Local Triangles (b) After Texturing

Fig. 13. Non-bijective parameterization causes bad looking result

the Saint VenantśKirchhoff model [Sin et al. 2013], respectively. The

Young’s Modulus is set to 1e4 and the Poisson’s Ratio is set to 0.4.

Fig. 14 shows our results. Fig. 15 also demonstrates the capability of

our formulation for generalising to elastic strands. The generality of

our formulation additionally facilitates coupling between elements

of different dimensions e.g. volume- and elastic strand elements.
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Fig. 14. Dropping three armadillo simultaneously with different ma-

terials. Energy from left (yellow) to right (green): SNE [Smith et al.

2018], ours, St-Vk [Sin et al. 2013]

.

Fig. 15. Simulating elastic strands/rods using 1D finite-elements with

our implicit ARAP energy.

Energy evaluation. We evaluate the performance of our root find-

ing during energy evaluation by comparing with two existing SVD

procedures. We measure the average time to evaluate the energy,

comparing with the Eigen [Guennebaud et al. 2021] and McAdams

et al. [2011]. Our results are shown in Fig. 16, which reveals that

our approach (without hardware-specific optimizations) is approxi-

mately 2× faster than McAdams et al. [2011] and upto 3.7× faster
than Eigen.

Rotational alignment. Tab. 3 summarises the performance of our

method to extract rotations by comparing with existing methods

(same setup as in Fig. 16). Comparisons are based on the source-code

provided by [Zhang et al. 2021], which is in the public domain. Our

method is on average 3.2× faster than the four methods we have

compared with. We achieve at-least 2× speedup over the state-of-

the-art [Zhang et al. 2021], and up-to 4.66× speedup over the SVD

implementation provided in the Eigen library [Guennebaud et al.

2021]. Our approach is not only faster but also inherently simpler

Table 3. Rotational alignment speedup: A summary of the perfor-

mance speedup of our method (evaluating Eq. (35)) versus existing

approaches to compute the rotation R from F (value in parenthesis

represents number of tetrahedra/deformation gradients.).

Bunny (700k) Cube (200k) Cylinder (150k)

Eigen SVD [Guennebaud et al. 2021] 3.77× 3.77× 3.76×
Horn [1987] 4.65× 4.66× 4.63×

Müller et al. [2016] 2.36× 2.36× 2.36×
Cayley Gershigorin [Zhang et al. 2021] 1.99× 2.02× 2.31×

Bunny Cube Cylinder0.00

0.05

0.10

0.15

0.20

0.25

Ti
m

e

Eigen SVD
Mcadams SVD
Ours

Fig. 16. Time (seconds) taken to evaluate the energy function on

three scenarios (#elements): bunny (700k), cube (200k), cylinder(150k).

Each scenario is defined by a tetrahedralized model, where ‘deformed’

vertices x are scrambled within a volume twice the default bounding

volume extents for generating deformation gradients with random

stretch and rotation factors.

.

than those requiring SVD of 3×3 matrices, eigenvectors of a 4×4
matrices, or Caley- and exponential maps with optimization.

8 DISCUSSION AND CONCLUSION

A Cauchy-Green invariant formulation of the isotropic ARAP en-

ergy has been presented. We introduce expressions that prescribe

an implicit relationship to the linear distortion terms of ARAP. The

gradient and Hessian of the energy are then evaluated with relative

ease, and impart little-to-no additional cost in computation time

since our new terms boil down to reducible scalars from the in-

variants. We have also described an approach to guarantee positive

semi-definiteness of the finite element Hessian, enabling fast and

concise constructions for Newton-type solvers. The energy can be

applied to a wide variety of simulation-problem domains, includ-

ing cloth, parametrisation, thin-strand modelling and it is robust

to extreme deformations and element inversions. In sum, we have

demonstrated that a rewriting of linear distortion terms using the

Cauchy-Green invariants is possible, allowing for unified treatment

of all respective isotropic materials which now includes corotational

energies. Moreover, the complete rogues’ gallery of g∗ and H∗ can
be therefore used to mix-and-match a range of isotropic energies,
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which now include ARAP. Our method is also useful for domain-

specific programming languages targeting physics based animation

like Taichi [Hu et al. 2019], Ebb [Bernstein et al. 2016] and Simit

[Kjolstad et al. 2016] with an expedient approach to implementing

isotropic energies written using the Cauchy-Green invariants.

Capturing the space of all isotropic materials. Our method over-

comes an inherently mathematical restriction whichśuntil nowśhas

prevented the expression of linear corotational energies using CG

invariants. Moreover, isotropic materials that are expressible us-

ing these invariants have been generally understood to form only

a (proper) subset of all isotropic energies because the invariants

are functions of the squares of the singular values 𝜎2𝑖 . This under-

standing in-part follows from the intuition provided by the Tay-

lor expansion of a general isotropic material Ψgen (𝜎1, 𝜎2, . . . , 𝜎𝑛)
e.g. around 𝜎𝑖 = 1,∀𝑖 , which will have terms that contain both odd

and even powers of these singular values. We have demonstrated

how this mathematical restrictionśas previously understoodśis a

loose imposition, which we now overcome.

Relations to the state-of-the-art. Comparing our formulation with

the S-centric analysis of Smith et al. [2019], perhaps the most distinct

invariant relative to our CG counterparts is their first 𝐼1 = tr(S),
which we actually reveal to be computable without SVD to give

merit to our formulation. Their second invariant 𝐼2 = 𝐼𝐶 is the first

CG invariant, and their third invariant 𝐼3 = 𝐽 can be determined

directly from the primary variable F without special treatment.

Our final energy in Eq. (36) also exhibits equivalent tendency for

volume preservation as the Stable Neo-Hookean model of Smith

et al. [2018] but without reparameterization, offering a CG invariant

based formulation for modelling materials with high resistance to

volume loss. The alternative Neo-Hookean model of Bonet and

Wood [2008] requires a log-term for volume preservation, which is

undefined in the inverted configuration unlike ours.

Alternative method to find singular values 𝜎𝑖 . From the Cayley-

Hamilton theorem, the CG invariants (as elementary symmetric

polynomials) can also be understood as the coefficients of the char-

acteristic polynomial

det (C − 𝜆I) ,
where I is the identity tensor and 𝜆 is a scalar variable. Moreover,

this polynomial (cubic) has roots that are available as analytical

expressions and evaluate to the eigenvalues 𝜎2𝑖 of the right Cauchy-

Green tensor C. Thus, as an alternative to our approach (cf. ğ 3.3 and

ğ 3.4) one may recover 𝜎𝑖 via square roots with an additional sign-

copy from the volume ratio 𝐽 to the smallest the singular value (see

also Franca [1989] and Sarabandi et al. [2020] for further discussion).

Our advantage is the provision of direct closed-form expressions for

the singular values without aforementioned sign-copies, simplifying

derivations of energy gradients (yielding rotations) and Hessians for

a more prudent implementation with less book-keeping. Readers

are also referred to Marsden and Hughes [1994] for further detail

about isotropic elasticity and invariants (see e.g. Propositions 5.8 to

5.10 of Chapter 3 on page 220).

Limitations and Future work. Root-finding is generally known to

be potentially unstable for certain values of the coefficients, which

we did not address in this paper. Our procedures are based on Fer-

rari’s method with complex numbers using the real part of the

answer as our final result and is sufficient for our purposes. How-

ever, further investigation is needed as several stages of solving the

quartic involve square roots, which leads to branching out to special

cases and awkward treatments of discriminants.

Our method has advantage over state-of-the-art analysis [Smith

et al. 2019] but we still require rotation factors U and V to reuse their

‘closed-form’ eigenvectors of the local Hessian. However, no proof

exists to show that expressions defined in terms of these factors

represent the simplest/most-efficient analytic form. Our provision

of a proper analytic rotation R suggests otherwise, thus leaving an

open problem to prove this hypothesis which may potentially lead

to eigenvector expressions that depend directly on this R.
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A INVARIANT DERIVATIVES

In this section, we summarise the gradients and Hessian of the

Cauchy-Green invariants for self containment, which are also found

in [Kim and Eberle 2020].

For 𝐼𝐶 , we have

𝜕𝐼𝐶

𝜕F
= 2F

𝜕2𝐼𝐶

𝜕F2
= 2

𝜕F

𝜕F

g1 = 2vec (F) H1 = 2I9×9 .

For 𝐼 𝐼𝐶 , we have

𝜕𝐼 𝐼𝐶

𝜕F
= 4FF⊺F

𝜕2𝐼 𝐼𝐶

𝜕F2
= 4

(
𝜕F

𝜕F
F⊺F + F 𝜕F

⊺

𝜕F
F + FF⊺ 𝜕F

𝜕F

)
g2 = 4vec (FF⊺F) H2 = 4 (I3×3 ⊗ FF⊺ + F⊺F ⊗ I3×3 + D) ,

where 𝐴 ⊗ 𝐵 denotes the Kronecker product and the matrix D is

given by

D =


f0f
⊺
0 f1f

⊺
0 f2f

⊺
0

f0f
⊺
1 f1f

⊺
1 f2f

⊺
1

f0f
⊺
2 f1f

⊺
2 f2f

⊺
2


.

here f𝑖 denotes the 𝑖th column of F.

Finally, for 𝐽 , we have

g3 = 2𝐽g𝐽 H3 = 2g𝐽 g
⊺
𝐽
+ 2𝐽H𝐽 ,
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where 𝐽 = det(F) and
g𝐽 = vec

( [
f1 × f2 f2 × f0 f0 × f1

] )

H𝐽 =


0 −f̂2 f̂1
f̂2 0 −f̂0
−f̂1 f̂0 0


,

where x̂ is the matrix cross-product operator

x̂ =


0 −x2 x1
x2 0 −x0
−x1 x0 0


.

Corresponding derivatives of 𝐼 𝐼 𝐼𝐶 (i.e. g𝐼 𝐼 𝐼𝐶 = vec (𝜕𝐼 𝐼 𝐼𝐶/𝜕F) and
H𝐼 𝐼 𝐼𝐶 = vec

(
𝜕2𝐼 𝐼 𝐼𝐶/𝜕F2

)
) are evaluated similarly but using C in

place of F.

B TRACE POLYNOMIAL DERIVATIVES

Here we summarise the numerator expressions 𝑝𝑖 𝑗

𝑖, 𝑗 ∈ {1, 2, 3} ⇐⇒ {𝐼𝐶 , 𝐼 𝐼𝐶 , 𝐽 },
that are required to evaluate Eq. (25). These can be written in several

forms and are computed easily since they are only comprised of

reducible scalar terms

𝑝11 = 4𝑓
𝜕𝑓

𝜕𝐼𝐶
+ 2 −

(
12𝑓 2

𝜕𝑓

𝜕𝐼𝐶
− 4𝑓 − 4𝐼𝐶

𝜕𝑓

𝜕𝐼𝐶

)
𝜕𝑓

𝜕𝐼𝐶

𝑝12 = 4𝑓
𝜕𝑓

𝜕𝐼 𝐼𝐶
−

(
12𝑓 2

𝜕𝑓

𝜕𝐼 𝐼𝐶
− 4𝐼𝐶

𝜕𝑓

𝜕𝐼 𝐼𝐶

)
𝜕𝑓

𝜕𝐼𝐶

𝑝13 = 4𝑓
𝜕𝑓

𝜕𝐽
−

(
12𝑓 2

𝜕𝑓

𝜕𝐽
− 4𝐼𝐶

𝜕𝑓

𝜕𝐽
− 8

)
𝜕𝑓

𝜕𝐼𝐶

𝑝21 = −
(
12𝑓 2

𝜕𝑓

𝜕𝐼𝐶
− 4𝑓 − 4𝐼𝐶

𝜕𝑓

𝜕𝐼𝐶

)
𝜕𝑓

𝜕𝐼 𝐼𝐶

𝑝22 = −
(
12𝑓 2

𝜕𝑓

𝜕𝐼 𝐼𝐶
− 4𝐼𝐶

𝜕𝑓

𝜕𝐼 𝐼𝐶

)
𝜕𝑓

𝜕𝐼 𝐼𝐶

𝑝23 = −
(
12𝑓 2

𝜕𝑓

𝜕𝐽
− 4𝐼𝐶

𝜕𝑓

𝜕𝐽
− 8

)
𝜕𝑓

𝜕𝐼 𝐼𝐶

𝑝31 = 8
𝜕𝑓

𝜕𝐼𝐶
−

(
12𝑓 2

𝜕𝑓

𝜕𝐼𝐶
− 4𝑓 − 4𝐼𝐶

𝜕𝑓

𝜕𝐼𝐶

)
𝜕𝑓

𝜕𝐽

𝑝32 = 8
𝜕𝑓

𝜕𝐼 𝐼𝐶
−

(
12𝑓 2

𝜕𝑓

𝜕𝐼 𝐼𝐶
− 4𝐼𝐶

𝜕𝑓

𝜕𝐼 𝐼𝐶

)
𝜕𝑓

𝜕𝐽

𝑝33 = 8
𝜕𝑓

𝜕𝐽
−

(
12𝑓 2

𝜕𝑓

𝜕𝐽
− 4𝐼𝐶

𝜕𝑓

𝜕𝐽
− 8

)
𝜕𝑓

𝜕𝐽

C ROTATIONS FOR LOWER-DIMENSIONAL ELEMENTS

The example case of 3D cloth simulation [Kim 2020] presents a

scenario in which (triangular) elements are furnished with a non-

square (e.g. 3×2) deformation gradient that would be used to evaluate

Eq. (33). However, standard convention stipulates that the (in-plane)

rotation R for evaluating gradients is computed from a square F. In

keeping with this dictum, methods (e.g. Bender and Deul [2013]; Etz-

muß et al. [2003] and Panetta [2019]) will augment the element with

an auxiliary vertex [Sumner and Popović 2004] or normal [Panetta

2019] so as to ensure a square IRd×d deformation gradient, which

increases the number of degrees of freedom in F. We revisit this

problem and advocate a general polar factorization of a (potentially)

non-square deformation gradient to produce a (semi-) orthogonal

rotation R ∈ IRm×n and a symmetric matrix S ∈ IRn×n that is positive
semi-definite. We further prove that minimizing the ARAP energy

with the resulting rotation is equivalent to the case where F is a

square matrix of dimension IRn×n.

Non-square polar factorization. One can extract a rotation R from

a non-square F = UΣ★V⊺ ∈ IRm×n (𝑚 > 𝑛) with a standard SVD

routine, where U ∈ IRm×m is orthogonal and Σ★ ∈ IRm×n is a

rectangular diagonal matrix

Σ★ =



Σ

0 · · · 0
...

. . .
...

0 · · · 0



, (42)

The sub-matrix Σ ∈ IRn×n has non-negative diagonal entries, and

V ∈ IRn×n is also orthogonal.

The rotation and scaling factors from this ‘semi’ polar decompo-

sition (semi-PD) are then

R = U



V⊺

0 · · · 0
...

. . .
...

0 · · · 0



(43)

S = VΣV⊺ . (44)

The (semi-) orthogonal rotation R is now a rank 𝑛 matrix, which

can be demonstrated as follows:

R⊺R =


0 · · · 0

V
...

. . .
...

0 · · · 0


U⊺U



V⊺

0 · · · 0
...

. . .
...

0 · · · 0


= I𝑛×𝑛 .

This rank 𝑛 rotation (𝑛 ≤ 𝑚) nonetheless serves as an adequate

term with which to measure and minimise deviation from the cor-

responding deformation gradient.

Proof. Eq. (1) is in fact the energy of an 𝑛-dimensional element

embedded in𝑚-dimensional space with deformation gradient F ∈
IRm×n.

We use Chao et al. [2010]’s model to show this

ΨChao =
𝜇

2

∫
Ω𝑒

min
R†∈𝑆𝑂 (3)

∥F − R†∥2F, (45)

representing an energy density function over the domain of an ele-

mentΩ𝑒 which has a solutionR
† for a fixed F to minimise | |F − R† | |2F.

This minimisation of Eq. (45) is also equivalent to maximising the

trace tr(F⊺R†), which is revealed by applying a similar expansion
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as Eq. (2) using Eq. (5). This property will be fundamental to our

proof.

By noting that F = U(Σ★)V⊺ and F⊺ = V(Σ★) ⊺ U⊺ , we demon-

strate that the (potentially non-square and) orthogonal matrix R

from Eq. (43) is the solution R† for minimizing Eq. (45). Let A =

√
Σ,

where Σ is the diagonal matrix of singular values of F, and rewrite

the trace by

tr(F⊺R†) = tr
(
V(Σ★)⊺U⊺R†

)
= tr

(
VA𝐿A𝑅U

⊺R†
)

= ⟨VA𝐿,A𝑅U
⊺R†⟩,

where

A𝐿 =

[
A

0

0

]
, A𝑅 =


A

0

0

0 0 0



and ⟨·, ·⟩ denotes matrix inner product. From the CauchyśSchwarz

inequality, we have

tr
(
F⊺R†

)
≤ ∥VA𝐿 ∥2F · ∥A𝑅U

⊺R†∥2F,

with which we can show that the rotation R from our semi-PD in

Eq. (43) will minimise Eq. (45) by

∥VA𝐿 ∥2F · ∥A𝑅U
⊺R†∥2F = ∥A𝐿 ∥2F · ∥A𝑅 ∥2F

= ∥A∥2F · ∥A∥
2
F

= tr(A2)
= tr(Σ)
= tr(S)
= tr(F⊺R) . (46)

We arrive at Eq. (46) using the isotropy property of orthogonal

matrices (invariance of Frobenius norm under rotations). Thus, the

energy for an𝑛-dimensional element (e.g. triangle) in𝑚-dimensional

space is also Eq. (1), but the rotation matrix now comes from our

semi-PD in Eq. (43) and Eq. (44). □
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