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1 INTRODUCTION
The following descriptions assume a 𝑑-dimensional finite element
(𝑑 = 1, 2 or 3) embedded in three-dimensional space. Each such
element is imbued with a deformation gradient tensor F ∈ IR3×d
with which we compute the Cauchy-Green (CG) tensor as C =

F⊺F ∈ IRd×d.
The deformation gradient can be decomposed and analysed in

several ways for the purpose of measuring strain, and distilling
matrix/tensor properties which we use to derive the polynomials.
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One method is polar factorisation F = RS yielding a unitary rotation
R ∈ IR3×d, and a stretch S ∈ IRd×d which is symmetric with real
eigenvalues. This polar factorisation is also related to the singular
value decomposition (SVD) F = UΣV⊺ , where U and V are rotation
factors, and Σ is a diagonal matrix of singular values 𝜎𝑖 . Moreover,
the columns of V are the eigenvectors of F which also define the
diagonalisable stretch S = VΣV⊺ , and the corresponding rotation
factor may also be defined as R = VU⊺ from this SVD.

With this view, the CG invariants may be written as

𝐼𝐶 = tr(C) =
𝑑∑︁
𝑖

𝜎2𝑖 , (1)

𝐼 𝐼𝐶 = ∥C∥2F =

𝑑∑︁
𝑖

𝜎4𝑖 , (2)

𝐼 𝐼 𝐼𝐶 = det (C) =
𝑑∏
𝑖=1

𝜎2𝑖 , (3)

which we use to derive the polynomial(s) necessary to rewrite coro-
tational energies.

2 POLYNOMIAL FOR THE 3D ENERGY
In this section, we summarise the derivation of the quartic polyno-
mial which we use to rewrite the 3D ARAP energy in terms of the
CG invariants and show that the trace term is a root. Let us revisit
the trace term:

tr (F⊺R) = 𝜎1 + 𝜎2 + 𝜎3, (4)
which is a sum of the three singular values 𝜎𝑖 of F ∈ IR3×3. The
invariants in 3D are

𝐼𝐶 = 𝜎21 + 𝜎22 + 𝜎23

𝐼 𝐼∗𝐶 =
1
2

(
𝐼2𝐶 − 𝐼 𝐼𝐶

)
= (𝜎1𝜎2)2 + (𝜎1𝜎3)2 + (𝜎2𝜎3)2

𝐼 𝐼 𝐼𝐶 = (𝜎1𝜎2𝜎3)2 , (5)

which we’ll use to rewrite the energy.
We derive of the quartic polynomial (see Eq. (21) in the paper) by

starting from Eq. (4) and squaring both sides to obtain:

tr (F⊺R)2 =
( 3∑︁
𝑖=1

𝜎𝑖

)2
=

( 3∑︁
𝑖=1

𝜎2𝑖

)
︸    ︷︷    ︸

𝐼𝐶

+2 (𝜎1𝜎2 + 𝜎2𝜎3 + 𝜎1𝜎3) . (6)

The first invariant 𝐼𝐶 appears immediately on the right-hand-side
(RHS) but the second term is not reducible to any invariant which
is crucial for rewriting the energy and evaluating the necessary
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derivatives. We resolve this by further rearranging and once more
squaring both sides to get(

tr (F⊺R)2 − 𝐼𝐶

)2
= 4 (𝜎1𝜎2 + 𝜎2𝜎3 + 𝜎1𝜎3)2

= 4
[
(𝜎1𝜎2)2 + (𝜎2𝜎3)2 + (𝜎1𝜎3)2

]
+

8(𝜎21𝜎2𝜎3 + 𝜎1𝜎
2
2𝜎3 + 𝜎1𝜎2𝜎

2
3 )

= 4𝐼 𝐼∗𝐶 + 8𝜎1𝜎2𝜎3
3∑︁

𝑖=1
𝜎𝑖

= 4𝐼 𝐼∗𝐶 + 8
√︁
𝐼 𝐼 𝐼𝐶 tr (F⊺R) , (7)

which, after manipulation, yields the following

𝑡4 − 2𝐼𝐶𝑡2 − 8𝐽𝑡 + 𝐼2𝐶 − 4𝐼 𝐼∗𝐶 = 0, (8)

as the quartic polynomial with which we rewrite the ARAP energy,
where 𝑡 B tr (F⊺R), and 𝐽 is directly used in place of

√
𝐼 𝐼 𝐼𝐶 for

brevity and practical convenience.

2.1 The trace term is a root
To find the roots of the Eq. (8), one popular method is the Ferrari’s
method. The Ferrari’s method to solve Eq. (8) can be summarized as
follows,

𝛼 = −2𝐼𝐶 ,
𝛽 = −8𝐽 ,
𝛾 = 𝐼2𝐶 − 4𝐼 𝐼∗𝐶 ,

if 𝛽 = 0 (i.e. element has zero volume) then, the four roots are

𝑥 = ±𝑠

√︄
−𝛼 ±𝑡

√︁
𝛼2 − 4𝛾
2

. (9)

Otherwise, continue with

𝑃 = −𝛼
2

12
− 𝛾,

𝑄 = − 𝛼3

108
+ 𝛼𝛾

3
− 𝛽2

8
,

𝐿 = −𝑄
2
+

√︂
𝑄2

4
+ 𝑃3

27
,

𝑍 =
3√
𝐿,

𝑦 = −5
6
𝛼 +


− 3

√︁
𝑄, 𝑍 = 0

𝑍 − 𝑃

3𝑍
, 𝑍 ≠ 0

,

𝑊 =
√︁
𝛼 + 2𝑦,

𝑥 =
±𝑠𝑊 ±𝑡

√︃
−(3𝛼 + 2𝑦 ±𝑠 2𝛽

𝑊
)

2
. (10)

The two symbols ±𝑠 must have the same sign, the symbol ±𝑡 is
independent to ±𝑠 . To get the four roots, we compute 𝑥 for ±𝑠 .±𝑡 =
+, + and for +,−; and for −, + and for −,−. Finally these four roots

of the polynomial can be reduced to the following form

𝑥1 = 𝜎𝑥 − 𝜎𝑦 − 𝜎𝑧 ,

𝑥2 = 𝜎𝑦 − 𝜎𝑥 − 𝜎𝑧 ,

𝑥3 = 𝜎𝑧 − 𝜎𝑦 − 𝜎𝑥 ,

𝑥4 = 𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧 , (11)

where 𝑥4 is the trace term we need, and its expression is Eq. (10)
with +𝑠 , +𝑡 .

3 POLYNOMIAL FOR THE 2D ENERGY
The CG invariants of the deformation gradient F ∈ IR3×2 from a 2D
element are1

𝐼𝐶 = 𝜎21 + 𝜎22 , (12)

𝐼 𝐼𝐶 = 𝜎41 + 𝜎42 , (13)

𝐼 𝐼 𝐼𝐶 = (𝜎1𝜎2)2 . (14)

The trace term will reduce to

tr (F⊺R) = tr (S) = 𝜎1 + 𝜎2, (15)

which is now a sum of the two singular values of F in 2D. Squaring
of Eq. (15) gives

(𝜎1 + 𝜎2)2 = 𝜎21 + 𝜎22 + 2𝜎1𝜎2, (16)

where, after substituting the CG invariants, we get

tr (F⊺R)2 =
{
𝐼𝐶 + 2

√
𝐼 𝐼 𝐼𝐶 , det(F) ≥ 0,

𝐼𝐶 − 2
√
𝐼 𝐼 𝐼𝐶 , det(F) < 0,

(17)

as the polynomial expression(s) with which to rewrite an energy.
This 2D case is dependent on the first 𝐼𝐶 and third 𝐼 𝐼 𝐼𝐶 invariants,
where the case-by-case (or piecewise) continuity of Eq. (17) is due
to the fact that 𝐼 𝐼 𝐼𝐶 discards the sign information from the singular
values because it is evaluated from C.

Once more, the trace term (cf. Eq. (15)) is a root of the polyno-
mial expression(s) in Eq. (17). To show this, we bring to focus the
expression for the case where det(F) ≥ 0 and let 𝑡 B tr (F⊺R) to
then rewrite the Eq. (17) as

𝑡2 = 𝐼𝐶 + 2
√︁
𝐼 𝐼 𝐼𝐶 or, 𝑡2 − 𝐼𝐶 − 2

√︁
𝐼 𝐼 𝐼𝐶 = 0. (18)

Since Eq. (18) is quadratic, the two roots are found using the classic
form

𝑥 =
−𝑏 ±

√
𝑏2 − 4𝑎𝑐
2𝑎

, (19)

which, upon substituting Eq. (12) and Eq. (14) into Eq. (18), will give

𝑥1 = −𝜎1 − 𝜎2, and, 𝑥2 = 𝜎1 + 𝜎2, (20)

where 𝑥2 is the trace.
The condition det(F) ≥ 0 is always true for any non-square defor-

mation gradient F ∈ IRn×d where 𝑛 > 𝑑 since there are insufficient
degrees of freedom to induce inversion i.e. inverting a𝑑-dimensional
element in 𝑛-dimensional space can always be represented as a ro-
tation in 𝑛-dimensional space. This means we can always use the
polynomial corresponding to the condition det(F) ≥ 0 when work-
ing with a non-square deformation gradient because the respective
element cannot ever be inverted by definition.
1These definitions are also valid for 2D elements embedded in 2D space with F ∈ IR2×2
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3.1 Root function derivatives
We summarise the derivatives of the root expression (which we call
𝑓 ) corresponding to the trace in this section.
Following the same approach as in §4 of the paper, the first-order

derivatives are given by

𝜕𝑓

𝜕𝐼𝐶
=

1
2𝑓

,
𝜕𝑓

𝜕𝐼 𝐼𝐶
= 0,

𝜕𝑓

𝜕𝐼 𝐼 𝐼𝐶
=

1
2𝑓

√
𝐼 𝐼 𝐼𝐶

, (21)

and the second-order derivatives follow by

𝜕2 𝑓

𝜕𝐼2
𝐶

=

−
(
𝜕𝑓

𝜕𝐼𝐶

)2
𝑓

,
𝜕2 𝑓

𝜕𝐼𝐶 𝜕𝐼 𝐼𝐶
= 0,

𝜕2 𝑓

𝜕𝐼𝐶 𝜕𝐼 𝐼 𝐼𝐶
=

− 𝜕𝑓

𝜕𝐼𝐶

𝜕𝑓

𝜕𝐼𝐼 𝐼𝐶

𝑓

𝜕2 𝑓

𝜕𝐼 𝐼𝐶 𝜕𝐼𝐶
= 0,

𝜕2 𝑓

𝜕𝐼 𝐼2
𝐶

= 0,
𝜕2 𝑓

𝜕𝐼 𝐼𝐶 𝜕𝐼 𝐼 𝐼𝐶
= 0

𝜕2 𝑓

𝜕𝐼 𝐼 𝐼𝐶 𝜕𝐼𝐶
=

− 𝜕𝑓

𝜕𝐼𝐼 𝐼𝐶

𝜕𝑓

𝜕𝐼𝐶

𝑓
,

𝜕2 𝑓

𝜕𝐼 𝐼 𝐼𝐶 𝜕𝐼 𝐼𝐶
= 0,

𝜕2 𝑓

𝜕𝐼 𝐼 𝐼2
𝐶

=

−2
(

𝜕𝑓

𝜕𝐼𝐼 𝐼𝐶

)2
− 1

2𝐼 𝐼 𝐼
3
2
𝐶

2𝑓
. (22)

3.2 Inversion awareness for F ∈ IR2×2

Working with a square deformation gradient F (e.g. as in parameter-
ization problems; see also § 2) requires that we account for the case
where det(F) < 0. However, this implies that we evaluate deriva-
tives for the normal and inverted case separately via Eq. (17). A
more practical solution is to replace

√
𝐼 𝐼 𝐼𝐶 with 𝐽 . This means we

can work with a single expression where the trace is always the root
with which we can evaluate the derivatives (for the energy gradient
and Hessian). In this regard, we update Eq. (18) to

𝑡2 − 𝐼𝐶 − 2𝐽 = 0 (23)

which is now agnostic to the sign information of the singular values
of F that indicate whether an element is inverted or not (see §3.4 in
the paper). The derivatives that follow can be computed similarly
with Eq. (21) and Eq. (22) (i.e. deriving w.r.t 𝐽 instead of 𝐼 𝐼 𝐼𝐶 ).

4 POLYNOMIAL FOR THE 1D ENERGY
We summarise the derivation of the 1D polynomial in this section,
which is useful for simulating elastic strands.

Following from Equations 1-3, the invariants of the deformation
gradient F ∈ IR3×1 from a 1D element are

𝐼𝐶 = 𝜎21 (24)

𝐼 𝐼𝐶 = 𝜎41 = 𝐼2𝐶 (25)

𝐼 𝐼 𝐼𝐶 = 𝜎21 = 𝐼𝐶 , (26)

where the first and third invariant are equal and the second is their
square. The notion of a trace operator will reduce to an expression
with one singular value

tr (F⊺R) = tr (S) = tr (Σ) = 𝜎1, (27)

since the stretch factor S is tensor of order-zero i.e. a scalar. A
rewriting in terms of the invariants (Equations 1-3) is achieved by

squaring

tr (F⊺R)2 = 𝜎2𝑖 ≡ 𝐼𝐶 , (28)

which yields a simple expression with 𝐼𝐶 . Using 𝑡 B tr (F⊺R) and
rearranging 𝑡2 − 𝐼𝐶 = 0, the roots can be found easily 𝑡 = ±

√
𝐼𝐶 ,

which, after substitution, gives

𝑥1 = −𝜎1, and 𝑥2 = 𝜎1, (29)

where 𝑥2 is the trace.

4.1 Root function derivatives
The derivatives of the root equation corresponding to the trace are
likewise needed to evaluate the energy gradients and Hessian. To
this end, we let 𝑓 be the expression for the root evaluating to the
trace term e.g. 𝑥2 in Eq. (20). The first-order derivatives of this 𝑓 are

𝜕𝑓

𝜕𝐼𝐶
=

1
2𝑓

,
𝜕𝑓

𝜕𝐼 𝐼𝐶
= 0,

𝜕𝑓

𝜕𝐼 𝐼 𝐼𝐶
= 0, (30)

and the second-order derivatives are of the form

𝜕2 𝑓

𝜕𝐼2
𝐶

=

−
(
𝜕𝑓

𝜕𝐼𝐶

)2
𝑓

,
𝜕2 𝑓

𝜕𝐼𝐶 𝜕𝐼 𝐼𝐶
= 0,

𝜕2 𝑓

𝜕𝐼𝐶 𝜕𝐼 𝐼 𝐼𝐶
= 0,

𝜕2 𝑓

𝜕𝐼 𝐼𝐶 𝜕𝐼𝐶
= 0,

𝜕2 𝑓

𝜕𝐼 𝐼2
𝐶

= 0,
𝜕2 𝑓

𝜕𝐼 𝐼𝐶 𝜕𝐼 𝐼 𝐼𝐶
= 0,

𝜕2 𝑓

𝜕𝐼 𝐼 𝐼𝐶 𝜕𝐼𝐶
= 0,

𝜕2 𝑓

𝜕𝐼 𝐼 𝐼𝐶 𝜕𝐼 𝐼𝐶
= 0,

𝜕2 𝑓

𝜕𝐼 𝐼 𝐼2
𝐶

= 0. (31)

5 ANALYTIC EIGENSYSTEM OF 1D STRAND ENERGY
Here we summarise the process of how we arrive at the analytic
eigensystem of the 1D (strand) energy. We follow similar steps as
Smith et al. [3] and the experimental procedure outlined by Kim
and Eberle [2].

The rewritten 1D energy

Ψ1D = 𝐼𝐶 − 2tr(R⊺F) + 1,

= 𝐼𝐶 − 2
(
P(𝑡) |𝑡=𝑓 = 0

)
+ 1,

≡ 𝐼𝐶 − 2
√︁
𝐼𝐶 + 1, (32)

has a PK1 of the form

P(F) = 𝜕Ψ1D
𝜕F

=
Ψ1D
𝜕𝐼𝐶

𝜕𝐼𝐶

𝜕F
. (33)

The corresponding Hessian (a 2nd-order tensor e.g. ∈ IR3×3) is
given by

𝜕P(F)
𝜕F

=
𝜕2Ψ1D
𝜕𝐼2
𝐶

G𝐼𝐶 ⊗ G𝐼𝐶 + 𝜕Ψ1D
𝜕𝐼𝐶
H𝐼𝐶 ,

≡ 𝜕2Ψ1D
𝜕𝐼2
𝐶

g𝐼𝐶 g⊺
𝐼𝐶

+ 𝜕Ψ1D
𝜕𝐼𝐶

H𝐼𝐶 , (34)

where g𝐼𝐶 = vec
(
G𝐼𝐶

)
is the vectorised gradient andH𝐼𝐶 = vec

(
H𝐼𝐶

)
the correspondingly vectorised Hessian. Their definitions are given
as follows

g𝐼𝐶 = 2F (35)
H𝐼𝐶 = 2I3×3 (36)
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The eigenvalues and the eigenvectors of Eq. (34) are provided as
follows:

_0 = 1, 𝑄0 = UT𝑥V⊺, (37)

_1 = 1 − 1
𝜎1

, 𝑄1 = UT𝑦V⊺, (38)

_2 = 1 − 1
𝜎1

, 𝑄2 = UT𝑧V⊺ . (39)

Moreover, the new ‘twist’ tensors are given by

T𝑥 =


1
0
0

 , T𝑦 =


0
1
0

 , T𝑧 =


0
0
1

 , (40)

which we determine by following Smith et al. [3] using trial-and-
error experimentation as described by Kim and Eberle [2].

Rotation factors U and V of our non-square deformation gradient
F ∈ IR3×1 are determined by first observing that V ∈ IR1×1 is an
orthonormal order-zero tensor (scalar) by definition (i.e. from F =

UΣV⊺). That is, V = 1 always holds. Following from our proof

in Appendix C of the main paper, the rotation part of F can be
constructed as

R = U

V⊺

0
0

 = U

1
0
0

 , (41)

which implies that the first column of U ∈ IR3×3 is R ∈ IR3×1 com-
puted using Eq. (35) in the main paper. The remaining two columns
of U are arbitrarily and can be chosen as any two vectors that are
of unit length ∈ IR3×1 and forming an orthonormal 3D basis with
this R e.g. using Householder orthogonalisation like Frisvad [1].
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